

هدف هاى رفتارى

چس از آموزش اين فصل از فراگير انتظار مى رود بتواند:
ا- كميتهاى فيزيكى را بشناسد.

〒-
ه- نمايش بردارى بردار ها را را بداند.
¢- مقدار بردار را با استفاده از مؤلفههاى متعار اريامد آن محاساسبه نمايد.

$$
\begin{aligned}
& \text { كميت هاى فيز يكى }
\end{aligned}
$$

كميتهايى هستند كه فقط داراى اندازه يا مقدار مىباشند؛ مانند جرم، زمان، طول جسم و كار و انرزثى.
ك
كميتهايى هستند كه علاوه بر مقدار داراى جهت و راستا نيز مى باشند. مانند: بردارهاى نيرو، گثتاور، سرعت، شتاب و جابجايى.

بردارها (Vector) r-r

 محور X و در جهت و راستاى نشان داده شده ترسيم شده است. نكته:
زاويه امتداد هر بردار بايد با يك امتداد مبنا كه معمولاً امتدادهاى x يا Y است، مشخص

$$
\begin{aligned}
& \text { انواع بردارها } \\
& \text { - ا- بردار لغزان }
\end{aligned}
$$

بردارى است كه اگر در راستاى خود جابهجا شود، اثر آن بر جسم تغيير ننمايد. همانند نيروى F

$$
\frac{\boldsymbol{A}}{r-r \text { شكل }}
$$

萑
 ضربهاى كه به سر انسان وارد مى شود با ضربهاى كه با همان مقد مـدار و همان جهت به پاى او وارد مى آيد متفاوت است. ور دو بردار مساوى، موازى و همجهت را بردارهاى هم سنگ مى ناميم. شكل (ץ-ケ)

 دو بردار مساوى، موازى و مختلف الجهت را بردارهاى زوج مىناميم. شكل (Y-Y)

t-r \mid

的
دو بردار مساوى، همراستا و مختلفالجهت را بردارهاى مخالف گويند. شكل (Y-Q)

$$
\begin{aligned}
& \text { بردارى كه مقدار (اندازه) آن برابر واحد آ است را را بردار يكه يا واحد مىناميم. } \\
& \text { بر بردار نيرو }
\end{aligned}
$$

بردارى است كه علاوه بر مقدار، جهت و راستا دار داراى نقطه اثر نيز مى باشد و واحد اندازهيرى آن نيوتن (N) است و مطابق قانون دوم نيوتن به صورت زير تعريف مى شود:

تعريف نيوتن با استفاده از قانون دوم نيوتن يك نيوتن مقدار نيرويى است كه اگر به جرم

$$
\mathrm{F}=\mathrm{m} . \mathrm{a}
$$ متر بر مجذور ثانيه و در جهت إِممال نيرو ايجاد نمايد. $1 \mathrm{~N}=\left\lvert\, \mathrm{kg} \times 1 \frac{\mathrm{~m}}{\mathrm{~s}^{r}}\right.$

جمع و تفر يق بردارها

عمليات جمع و تفريق كميتهاى بردارى با جمع و تغريق كميتهاى عديدى (اسكالر) متغاوت است. در اين كتاب براى نشان دادن يك بردار مار مانند آن استفاده مىشود و براى نشان دادن مقدار (اندازه) آن بردار علامت (\longrightarrow (
مى شود.
Y- - - - روش هاى جمع و تفريق بردارها
 فصل با روش ترسيمى و در فصل بعد با روشه هاى محاسباتى آشنا خواهيد شد.

در اين روش با استفاده از وسايل ترسيم و مقياس مناسب جم مى شود. روش هاى ترسيمى جمع و تغريق بردارها شامل سه روش زير مىباشد: الف) روش مثلث ب) روش متوازى الاضلاع ج) روش چندضلعى
 بردار و روش چندضلعى براى مجموع يا تفاضل بيش از دو بردار مناسب مى باشند. الف) روش مثلث رور دو بردار

$$
\text { آنها يعنى } \overrightarrow{\text { P }}+\vec{Q} \text { صورت زير عمل مى كنيم: }
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{V}} \text { : } \\
& \text { V :V اندازه يا متدار بردار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) از نقطه دلخواه مانند A هم سنگ يكى از بردارها ترسيم مى شود } \\
& \text { (Y) از انتهاى بردار اول همسنگ بردار دوم ترسيم مى شود }
\end{aligned}
$$ ץ خواهد بود كه مقدار آن بهوسيلهُ خط كش مقياس اندازه گيرى مى شود: شكل (К-К)

 (Y از انتهاى بردار
ترسيم مى شود (خط d_d)

به ترسيم مى شود (خط (قطع نمايد.
 بود كه مقدار آن به وسيله خط كش مقياس برداشت مى شود.

ج) روش چندضلعى
در اين روش به منظور ترسيم مجموع چند بردار مانند شكل (Y-1 ا O بردار رسم شده هم سنگ بردار دوم ترسيم مى شود. اين روند تا ترسيم تمامى بردارها ادامه مى يابد؛ بردارى كه از ابتداى بردار اول به انتهاى بردار آخر رسم مى شود، مجموع بردارها خواهد بود. شكل (Ir-r)

نكته (1)
هر گاه انتهاى آخرين بردار بر ابتداى بردار اول منطبق گردد (يى چندضلعى بسته تشكيل شود)، مجموع بردارها صفر خواهد بود. نكته

در حالتى كه بردارها موازى يا همراستا باشند، براى جمع و تفريق آنها كافى است با در نظر گرفتن جهت بردارها، آنها را روى يكى محور ترسيم نمود. تذكر:

عمليات تفريق دو يا چند بردار به روشهاى فوق با استفاده از تعريف بردار مخالف مطابق شكل (Y-

\vec{A}
$\frac{\boldsymbol{A}}{1 r-r}$

$$
\begin{equation*}
\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}}) \tag{Y-Y}
\end{equation*}
$$

\vec{B}, \vec{A} تفاضل بردارهاى به روش مثلث

\vec{B}, \vec{A} تفاضل بردارهاى به روش متوازی الاضلاع

در شكل زير بردارهاى اندازهٔ تقريبى آنرا با خط كش مرار مقياس برداشت نماييد.
(ابعاد شبكه برابر • ا واحد است)

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

مجموع دو بردار به روش متوازى الاضلاع

تفاضل دو بردار به روش مثلث

تفاضل دو بردار به روش متوازى الاضلاع

 صفحه داشته باشيم و بردارى به نام مورد نظر به شرح ذيل تجزيه نمود كه عكس عمل جمع دو بردار مى باشد. شكل هاى (I (I-Y) و (10-r)
l) از انتهاى بردار آن ها را در نقاط O O و O O قطع نمايد.
r بردار (r r روش فوق، روش كلى براى تجزئ يك بردار است. حالت خاصى از آن تجزيهٔ يك بردار رار روى دو محور متعامد (عمود بر هم) است كه كاربرد زياى در حل مسائل ايستايى دارد.

در شكل روبهرو بردار F را روى امتدادهاى a و b تجزيه كنيد.

تجز ئه يك بردار به مؤلفه هاى متعامد آن در در دستگاه مختصات
مطابق شكل (Y-Y) بردار
 y عمل كنيم، به شكل (IV-Y) خواهيم رسيد.

 (يكه) روى آنها به ترتيب با دستگاه با رابطءٔ زير تعريف مى شود:

$$
\overrightarrow{\mathrm{R}}=\mathrm{R}_{\mathrm{x}} \overrightarrow{\mathrm{i}}+\mathrm{R}_{\mathrm{y}} \overrightarrow{\mathrm{j}}
$$

\square
فرم بردارى بردار F در شكل (مثال ${ }^{\text {F }}$ را بنويسيد. حل:

تعيين اندازهٔ يك بردار با استفاده از مؤلفه هاى متعامد آن
همانطور كه يك بردار را مى توان به دو مؤلفه روى امتدادهاى مختلف تجزيه كرد
 نسبتهاى مثلثاتى تعيين كرد. هر كاه بردارى مانند با امتداد X به صورت زير تعيين نمود:

$$
R=\sqrt{R_{x}^{r}+R_{y}^{r}}(\Delta-r)
$$

R R R R اندارزه) بردار

$$
\theta=\tan ^{-1}\left|\frac{\mathrm{R}_{\mathrm{y}}}{\mathrm{R}_{\mathrm{x}}}\right|
$$

زاويه بردار R نسبت به محور x ها (Y-Y)

$$
\begin{aligned}
& \text { فرم بردارى بردار } \overrightarrow{\text { بر }} \\
& \text { F } \\
& \mathrm{F}_{\mathrm{y}}=\Delta \cdot \cdot \mathrm{N} \\
& \overrightarrow{\mathrm{~F}}=\lambda я \varepsilon / \cdot \overrightarrow{\mathrm{r}}+\omega \cdot \cdot \overrightarrow{\mathrm{j}} \\
& \text { بنابراين: }
\end{aligned}
$$

خلاصه فصل
－كميتهاى فيزيكى به دو دستهٔ كلى تقسيم مى شوند： الف－كميتهاى اسكالر（عددى）ب－كميت هاى بردارى －بردارهاى يكه（واحد）روى محورهاى X و y در دستگاه مختصات دكار بارتى به ترتيب با號
－جمع و تفريق كميتهاى بردارى با جمع و تغريق كميتهاى عددى متفاوت مى باشد． －جمع و تغريق دو يا چند بردار به صورت ترسيمى با روش هاى مثلث و و متوازى الاضلاع و چچندضلعى، انجام مى شود．
－هر بردار را مى توان روى دو محور دلخواه به مؤلفههاى آن تجزيه يما نمود． －مؤلفههاى متعامد يك بردار در صفحه مختصات دكارتى با روابط زير محاسبه مى شوند：

$$
\begin{aligned}
& R_{x}=R \cdot \cos \theta \\
& R_{y}=R \cdot \sin \theta
\end{aligned}
$$

－فرم بردارى يك بردار با استفاده از مؤلفههاى متعامد آن در صفحأ مختصات دكارتى

$$
\overrightarrow{\mathrm{R}}=\mathrm{R}_{\mathrm{x}} \overrightarrow{\mathrm{i}}+\mathrm{R}_{\mathrm{y}} \overrightarrow{\mathrm{j}} \quad \text { عبارتاست از: }
$$

－براى جمع و تفريق بردارهاى همراستا و يا موازى كافى است اندازءٔ آنها را با يكديگر به صورت جبرى جمع و يا تفريق نمود． －اندازه بردارى مانند حور حي

$$
\begin{aligned}
& \mathrm{R}=\sqrt{\mathrm{R}_{\mathrm{x}}{ }^{r}+\mathrm{R}_{\mathrm{y}}{ }^{「}} \quad \mathrm{R} \text { اندازه بردار } \\
& \theta=\tan ^{-1}\left|\left(\frac{R_{y}}{R_{x}}\right)\right| \quad \mathbf{x} \text { زاويه بردار }
\end{aligned}
$$

(ا- كميتهاى فيز يكى را نام برده و هر يكـ را تعريف كنيد و مثال بزنيد.〒- از كميتهاى زير كداميكى اسكالر و كداميك بردارى مى باشند؟ شتاب - وزن - سطح - حجم - جابه ץF F بردار بر آيند با امتداد افق را با استفاده از خط كش و نقاله اندازه گيرى نمائيد.

-

צ- بردارهاى زير را به روش تر سيمى روى محورهاى داده شده تجزيه كنيد.

(ج)

بردارهاى زير را به مؤلفههاى متعامد آن تجزيه نمائيد و فرم بردارى آنها را بنويسيد.

^- بردارهاى زير را ترسيم نموده و اندازه و زاويه هر يكى را نسبت به محور X و Y تعيين كنيد.

$$
\begin{aligned}
& \overrightarrow{\mathrm{P}}=-\Delta \overrightarrow{\mathrm{i}} \\
& \overrightarrow{\mathrm{Q}}=-r \overrightarrow{\mathrm{i}}-r \overrightarrow{\mathrm{j}}
\end{aligned}
$$

$$
\vec{F}=-r \vec{i}+r \vec{j} \text { (الف }
$$

$$
\overrightarrow{\mathrm{T}}=r / \Delta \overrightarrow{\mathrm{j}}
$$

