فصل يازدهم

آشنایی با لعابهای سرامیکی

هدفهای رفتاری: پس از پایان این فصل، هنرجو باید بتواند : ۱- تاریخچهی لعاب را بداند. ۲- تعریف لعاب و خواص لعاب را بیان کند. ۳- تفاوت لعاب و شیشه را نام ببرد. ۴- انواع لعابها را تقسیم بندی کند. ۶- سه گزینهی اصلی تشکیل دهندهی لعابها را نام ببرد. ۷- مواد اولیهی لعابها را بهصورت کلی تقسیم بندی نماید. ۸- مواد اولیهی مصرفی مهم در ساخت لعابها را بیان کند. ۹- مواد اولیهی محلول در آب و سمی لعابها را نام ببرد. ۱۰ ماده سازی لعاب خام و لعاب فریتی را توضیح دهد.

مقدمه

قِدمت لعاب به هزاره ی چهارم قبل از میلاد مسیح میرسد. این درحالی است که شیشه حدود ۳۰۰۰ سال قبل از میلاد بهعنوان تزیین در مصر و بابل استفاده شده است. قدمت لعاب در ایران به قبل از دوره ی هخامنشیان (حدود ۲۵۰۰ سال قبل) میرسد.

شیشه و لعاب ابتدا بهصورت سنتی از خاکستر گیاهان (مانند گیاه کویری اشنون) ساخته میشد. ریشهی این گیاهان حاوی سدیم، کلسیم و پتاسیم است. در کشور ما، در چغازنبیل، به شیوهی سنتی لعاب تهیه و روی ظروف اعمال میشده است. با گذشت زمان، لعابهای رنگی (رنگ آبی و فیروزهای) بهوجود آمده است. در آن زمان مقدار مواد براساس محاسبات سنتی و تجربی تخمین زده میشد. مثلاً ۱/۵ من فریت (مخلوط خاکستر گیاه اشنون که با کوارتز ذوب میشد) به اضافهی یک من سنگ چخماق و نیم من بلور جهت تهیهی نوعی لعاب به کار میرفته است. امروزه با پیشرفت علم و تکنولوژی و تولید انبوه لعاب، امکان ساخت انواع آن به مقدار زیاد فراهم شده است.

۱_۱۱_ تعريف لعاب

لعاب پوشش شیشهای نازک شفاف (ترانسپارنت) یا کدر (اُپَک)، سفید یا رنگی با ضخامتی حدود ۱۵/ ۰ تا ۵/ ۰ میلیمتر است که درنتیجهی ذوب مخلوطی از سیلیکاتها روی بدنه اعمال میشود. با اعمال لعاب روی بدنه، خواص زیر بهوجود میآید :

۱ ـ تزیین و زیبایی ۲ ـ صافی سطح ۳ ـ مقاومت در برابر نفوذ رطوبت ۴ ـ افزایش استحکام ۵ ـ افزایش مقاومت شیمیایی ۶ ـ بهبود نارسانایی الکتریکی ۷ ـ بهداشتی شدن

در هنگام پخت لعابی، لایه ی لعاب به بدنه متصل می شود. تصاویر زیر شکل ۱۱–۱۱ چند نمونه لعاب را نشان میدهد.

(الف)

(د)

شکل ۱_۱۱_ انواع لعاب؛ الف) لعاب فلز، ب) لعاب کاشی، ج) لعاب ظروف، د) زرینفام

۲_۱۱_ تفاوت لعاب و شیشه

لعاب و شیشه هر دو «آمورف»اند و همان طور که قبلاً اشاره شد، دارای ساختار و نظم مولکولی نیستند و دراثر سردشدن به سرعت از حالت مذاب خارج می شوند و یک ساختار آمورف تشکیل می دهند. تفاوت لعاب و شیشه در این است که اولاً ضخامت لعاب در مقابل ضخامت شیشه بسیار کم تر است. ثانیاً مکانیزم تولید آن دو با هم متفاوت است. ثالثاً لعاب و شیشه دارای خواص متفاوت شیمیایی و فیزیکی اند. مثلاً لعاب ها ضریب انبساط حرارتی کم تری دارند. خواص مکانیکی و شیمیایی لعاب ها نسبت به شیشه ها بهتر است.

لعابها از نظر تعداد اکسید از شیشهها متنوعترند. لعاب به مثابهی پوشش (قطعات سرامیکی یا فلزی) اعمال میشود اما شیشه بهتنهایی یک محصول را تشکیل میدهد. درخصوص فرایند تولید، شیشه را اول ذوب میکنند، سپس شکل میدهند و لعاب برعکس ابتدا به آن شکل میدهند. سپس ذوب و پخت میشود. با دقت به شکل ۲–۱۱ ظروف شیشهای را با لعاب ظروف مقایسه کنید.

(الف)

(ب) شکل ۲_۱۱_ مقایسه ظروف شیشهای (شکل الف) با لعاب ظروف (شکل ب)

لعابها به شیوههای گوناگون تقسیم بندی می شوند. یکی از روش ها، تقسیم بندی براساس روش ساخت است که با این روش لعابها به سه دسته تقسیم می شوند : ۱ ـ لعابهای خام ۲ ـ لعابهای فریتی ۳ ـ لعابهای نمکی

لعاب خام: اگر مواد اولیه موجود در لعاب بدون مواد محلول در آب یا مواد سمی باشند، لعاب را بهصورت خام آماده میکنند، سپس روی قطعات اعمال و پخت میشود.

لعابهای فریتی: در این لعابها برخی از مواد اولیه که ۱ ـ محلول در آب یا ۲ ـ سمی باشند ابتدا ذوب میشوند تا بهصورت سیلیکات نامحلول در آب و غیرسمی درآیند. به سیلیکات حاصل شده فریت گفته می شود که پس از سایش در تهیه ی لعاب به کار می رود.

محدوده ی دمای پخت لعابهای خام بسته به نوع محصول از C° • ۱۲۰ تا C° •۱۴۵۰ میباشد و محدوده ی پخت لعابهای فریتی بین C° •۸۵ تا C° ۱۱۵۰ است.

لعابهای نمکی (تبخیری) در قدیم جهت تزیین ظروف بهکار میرفتهاند، که امروزه بهسبب آلودهنمودن محیط زیست و کیفیت پایین، مصرف نمیشوند.

روش دیگر تقسیم بندی براساس ترکیب لعاب است که شامل دو مورد زیر است :

لعاب و فریتهای سربدار
لعاب بوردار (نیاز به فریتشدن دارد زیرا محلول
لعاب بوردار (نیاز به فریتشدن دارد زیرا محلول
لعاب بدون بور (خام)
۲ لعاب و فریت بدون سرب
لعاب بوردار (محلول در آب و سمی است)

۴_۱۱_ کاربرد فریت و انواع لعاب عمده ی کاربرد فریت ها در صنایع کاشی دیواری است. لعاب های خام در چینی ها و کاشی های کف (استونور) و مینا (لعاب فلز) در صنایع تولید بخاری گازسوز، اجاق گاز و ظروف فلزی لعابدار به کار می روند. گاهی اوقات از لعاب به منظور پوشاندن رنگ نامطلوب بدنه استفاده میشود. به این منظور لعابهای کدر (اپک) مورد استفاده قرار میگیرد. در مقابل، لعابهای شفاف (ترانسپارنت) روی بدنههای سفیدپخت مانند چینی و کاشی سفیدپخت کاربرد دارد.

در تهیهی برخی لعابهای خاص برای بهتر جلوهدادن آن میتوان فرایند تولید را به سمت تشکیل کریستال سوق داد. روش دیگر تولید لعابهای خاص پدیدآوردن لایهی نازک فلزی در سطح لعاب است. این نوع لعاب با بهره گرفتن از بخارات برخی از نمکهای نقره، مس و بیسموت ایجاد میشود. به این قبیل لعابها زرین فام گویند.

۵ـــ۱۱ــ مواد او لیهی لعاب قبلاً گفته شد که ساختمان لعاب از سه گروه اکسیدهای اصلی تشکیل شده، که عبارتاند از : ۱ــ شبکهسازها (اکسیدهای شبکهساز با فرمول عمومی R_YO_۵ ، R_YO_۳ مانند B_YO_۳ و RO_۲ مانند SiO_۲)

۲_ دگرگونسازهای شبکه (اکسیدهای دگرگونساز با فرمول عمومی R_YO و RO مانند K_YO ، Na_YO)

۳ کمک شبکهسازها (اکسیدهای واسطه با فرمول عمومی R_YO_۲ مانند Al_YO_۲) برای تأمین اکسیدها بایستی از مواد اولیهی مناسب استفاده نمود که به شرح زیر تقسیم می شوند : ۱<u>۵۵۱ مواد اولیهی پلاستیک</u>: معمولاً از رس های سفید، مانند انواع کائولن، که دارای خلوص بالا و سفیدرنگاند، جهت تأمین اکسیدهای آلومینیم و سیلیسیم (مطرح در شبکهسازها و واسطه ها) استفاده می کنند (کائولینیت ۲H_YO ، ۲SiO_۲ ، ۲SiO_۲)

استفاده از رسهای غیرسفید پخت (کرم، شیری و ...) به دلیل وجود ناخالصی در شفافیت و رنگ پس از پخت لعاب و دمای ذوب آن تأثیر منفی دارد.

تذکر: نتیجه می گیریم این ماده ی اولیه، به دلیل رنگ بعد از پخت غیرسفید (نامطلوب) آن برای تهیه ی لعاب مناسب نیست. مواد اولیه ی پلاستیک نقش ماده ی تعلیق کننده ی ذرات لعاب را نیز بر عهده دارند و مقدار مصرف آنها در لعاب ۵ تا ۱۰ درصد وزنی است که در صورت نیاز به مقدار بیش تر مواد رسی، باید به صورت کائولن پخته وارد لعاب شوند.

۱_ جهت کسب اطلاعات بیشتر به فصل سوم کتاب «مواد اولیهی سرامیک» مراجعه کنید.

۲_۵_۱۱ مواد او لیه یغیر پلاستیک: این مواد اولیه اغلب جهت جلو گیری از بروز عیوب، مانند جمع شدگی بعد از پخت لعاب، به لعاب اضافه می شوند، که از مهم ترین آن ها سیلیس است. جهت تأمین اکسید سیلیسیم (SiO₁) به عنوان مهم ترین ماده ی اولیه لعاب، معمو لاً SiO₇ را از طریق سیلیس آزاد و یا سیلیس وارد شده از طریق آلو مینو سیلیکات ها (کائولن) و یا آلو مینو سیلیکات های قلیایی (فلدسپات ها) تأمین می شود.

خالص ترین نوع سیلیس آزاد، کوار تز صخره ای است که سیلیس به صورت بلورهای کریستالی در آن وجود دارد. سایر مواد اولیه ی سازنده لعابها یا محلول و یا غیر محلول در آب و برخی از آنها سمّی اند. این مواد به منزله ی کاهش دهنده ی دمای ذوب، بهبو ددهنده خواص لعاب یا به عامل رنگ کننده ی لعاب مورد استفاده قرار می گیرند.

از ترکیبات قلیایی نیز برای کاهش دادن دمای ذوب استفاده می شود. همچنین، جهت ایجاد رنگ در لعاب ها از برخی اکسیدها که در ترکیب با مواد اولیه ی لعاب رنگ های مختلف ایجاد می کنند، کمک می گیرند. در مواردی نیز از رنگینه ها (استین ها) که تلفیقی از چند اکسیدند جهت ایجاد رنگ در لعاب استفاده می کنند. خصوصیت رنگینه ها پایداربودن رنگ آن ها در هنگام پخت لعاب در دماهای بالاست. در شکل ۳–۱۱، تعدادی رنگینه مورد استفاده در ساخت لعاب را مشاهده می کنید. دکور لعاب ها را می توان به صورت زیرلعابی، داخل لعابی و رولعابی انجام داد. جهت تأمین اکسید پتاسیم (K₇O)، اکسید سدیم (Na₇O) و اکسید کلسیم (CaO) از انواع فلدسپاتهای پتاسیم، سدیم، کلسیم، ولستانیت و نفلین سیانیت استفاده می شود، که همگی در آب غیر محلول اند.

149

اکسیدهای کبالت، آهن، مس و ... و ترکیبات غیرمحلول در آب آنها عامل ایجاد رنگ در لعاب هستند.

در شکل ۴_۱۱ یک نمونه ی فلزی تزیین شده با لعاب های رنگی و در شکل ۵_۱۱ لعاب های رنگی اعمال شده بر قطعات سرامیکی را مشاهده می کنید.

شکل ۴_۱۱_ نمونه ای از استفاده از استین ها (رنگینه) در لعاب فلز

141

علاوه بر موارد مذکور، برخی اکسیدهای غیرمحلول در آب، مانند اکسید قلع (SnO) و اکسید تیتانیوم (TiO_r) به اپککردن لعابها کمک میکنند.

۳ ۵ ۱۱ ۵ میاد محلول در آب: مواد حاوی بور، مانند بوریک اسید (شکل ۶ ۱۱)، براکس (شکل ۷ ۱۱)، کلریدها، پتاسیم کربنات، فسفاتها، نیتریدها که محلول در آباند و تأمین کننده ی اکسیدهای ۲۰۵۳، Na₇O، Na₇O، ی LiO و برخی اکسیدهای رنگ کننده ی لعاب اند. هم چنین، نیترات و کلرور مس، آهن، کبالت و غیر آنها، نمکهای محلول در آب رنگ کننده ی لعاب هستند. در عمل به دلیل این که لعاب باید فاقد مواد محلول در آب باشد باید این مواد اولیه ی محلول در آب، طی عملیات حرارتی مناسب، به مواد غیر محلول در آب تبدیل شوند.

شکل ۶_۱۱_ بوریک اسید

شکل ۷_۱۱_ براکس پودری

۴_۵_۱۱ مواد اولیهی سمی: در مجموعهی مواد اولیهی محلول یا غیرمحلول در آب ممکن است مواد اولیهی سمی وجود داشته باشد. مواد غیرمحلول در آب حاوی سرب مانند سرنج (شکل ۸_۱۱)، اکسید سرب سفید، همچنین، ترکیباتی نظیر کروم اکسید، باریم کربنات و آرسنیک اکسید و غیر آنها، و مواد اولیه محلول در آب مانند سدیم کربنات، سرب استات و موادی که حاوی کروم اند مانند کروم اکسید (عامل رنگ کننده)، اگر به طور مستقیم در لعاب استفاده شوند و یا تنفس شوند و یا به نحوی وارد خون شوند، برای سلامتی مضر هستند.

روش غیرسمی نمودن این ترکیبات سمی نیز بهصورت فریت درآوردن آن هاست. نحوه ی ساخت فریت را با هم خواهیم آموخت.

شکل ۸_۱۱_ پودر سرنج

۲_۱۱_ آمادهسازی لعاب خام

مواد اولیه ی این نوع لعاب ها در آب نامحلول اند، که مواد اولیه پس از توزین دقیق به صورت ترساب در آسیاها (بال میل) با پوشش داخلی مناسب (آلومینایی، سایلکسی، استاتیتی و پرسلانی) ساییده می شوند تا به دانه بندی مناسب، که معمولاً دانه بندی کم تر از الک مش ۲۳۰ تا ۲۷۰ و پس از تنظیم دانسیته مناسب دوغاب لعاب (۲/۶g/cm – ۱/۶)، بسته به نوع محصول بر روی قطعات اعمال می شود و در دمای مناسب پخت بدنه، پخت لعاب صورت می گیرد. ۷–۱۱– آمادهسازی فریت مواد اولیهی محلول در آب و مواد سمی، پس از توزین دقیق، براساس فرمول، با یکدیگر بهصورت خشک کاملاً مخلوط میشود (هموژن) و در کورههای فریتسازی (شکل ۹–۱۱) در دمای مناسب معمولاً بیش از ۱۲۰۰ درجه سلسیوس ذوب میگردد. مذاب در آب سرد تخلیه میشود و به قطعات ریز شیشهای تبدیل میگردد. پس از خشک کردن و افزودن کائولن لازم جهت تعلیق و افزودن آب فریت را در آسیاب بهصورت ترساب یا خشکساب نرم میکنند تا دوغاب مناسب حاصل شود و متناسب با نوع بدنه با روش مناسب بر روی قطعات اعمال گردد.

شکل ۹_۱۱_ کور می فریتسازی

چون رنگ بدنه، که روی آن فریت اعمال می شود، همیشه سفید نیست، برای سفید جلو ددادن بدنه و صرفهجویی در مصرف اپک کننده ی لعاب، به آوردن لایه ای بین لعاب و بدنه اقدام می گردد که به «انگوب» معروف است.

انگوب معمولاً ترکیبی از لعاب و بدنه سفید پخت است، که قسمت عمده ی آن را لعاب تشکیل میدهد. پس از آمادهسازی، که مشابه آمادهسازی لعاب است و قبل از اعمال لعاب، روی بدنه قرار میگیرد. پس از اعمال لعاب و پخت انگوب، با پوشاندن رنگ غیرسفید و بعد از پخت بدنه اتصال لعاب به بدنه بهخوبی صورت میگیرد. انگوب از بروز عیوب ناشی از همخوانی بدنه و لعاب نیز جلوگیری و رفتار این دو (لعاب و بدنه) را به یک دیگر نزدیک میکند. ۸_۱۱_ ترکیب لعابها و فریتها در زمان قدیم به روش سنتی براساس تجربه (روش سعی و خطا) ترکیب و مواد اولیه ی لعابها را بهدست میآوردند. اما امروزه به روش محاسباتی فرمول زگر (که در کتاب محاسبات در سرامیک با آن آشنا شدهاید) با استفاده از روابط ریاضی ترکیب لعابها محاسبه می شود و از طریق محاسبه، میزان مواد اولیه ی مورد نیاز معین می گردد.

بياوريد.

واژەنامە

A

alkaline metals	فلزهاى قليايي
alkaline - earth metals	فلزهاي قليايي خاكي
alkaline - earth ions	يونھاي قليايي خاكي
alkaline ions	يونھاي قليايي
allotrop	آلوتروپ
alloy	آلياژ
amorphous	آمورف
anisotropic	انیزوتروپ، ناهمسانگردی
anion	آنيون
atomic bond	پيوند اتمي
atomic mass	جرم اتمی
atomic number	عدد اتمی
atomic radius	شعاع اتمي
	-

B

balancing	موازنه
bond power	قدرت پيوند
biochemical application	كاربرد بيوشيميايي
bioglass	بيوشيشه
boiling point	نقطه ی جوش
bond length	طول پيوند
borax	براكس
burn	سوختن

С

calcination	تكليس
catalyst	كاتاليزور
cation	كاتيون
cement	سيمان
cesium oxide	اكسيد سزيم
chemical change	تغيير شيميايي
chemical composition	تركيب شىيميايى
chemical equilibrium	تعادل شىميايى
chemical properties	خواص شيميايي
chemical reaction	واكنش شىيميايى
chemical resistance	مقاومت شيميايي
chemical stability	پايدارى شيميايى
compound material	مواد مرکب
concentration	غلظت
coordination number	عدد ھمسایگی
copper	مىس
corrosion	خوردگى
covalent bond	پيوند كووالانسى
covalence compound	تركيب كووالانسى
crystalline	متبلور
crystallization	بلورىشدن

D

diamond	الماس
dilute	ر قیق کردن

107

E

elastic deformation	تغيير شىكل كشرسان (الاستيكى)
electrical conductivity	رسانايي الكتريكي
electrical properties	خواص الكتريكي
electrolysis	برق كافت (الكتروليز)
electron configuration	آرايش الكتروني
electronegativity	الكترونگاتيويته
electron orbitals	مدارهای الکترونی
electron sea	درياي الكترون
element	عنصر
endothermic reaction	واكنش گرماگير
energy levels	انرژى
engobe	انگوب
exothermic reaction	واكنش گرمازا

F

fine ceramics	سرامیکهای ظریف
flux	گدازآور
frit glaze	لعاب فريتي

G

glass	شيشه
glaze	لعاب
gips	گچ

H

hardness	سختى
----------	------

heat capacity	ظرفیت گرمایی
hetrogeneous mixture	مخلوط غيرهمگن
hofman furnace	كوره حلقهاي
homogeneous mixture	مخلوط همگن
hydration	آب پوشىي سىمان
hydrogen bond	پيوند هيدروژني

I

impure material	مواد ناخالص
inert gases	گازهای بیاثر
intermediate oxides	اكسيدهاي واسطه
ionic bond	پيوند يونې
ionic compound	تركيب يونى
ionic radius	شعاع يوني
ionisation energy	انرژی یونش
island silicates	سيليكات جزيرهاي
isotope	ايزوتوپ
isotrope	ايزوتروپ

K

kettle furnace	كوره تاوهاي
L	
lime	آهک
lithium oxide	ليتيم اكسيد

\mathbf{M}

magnetic properties	خواص مغناطيسي
material (matter)	مواد (ماده)
mass	جرم
mass number	عدد جرمي
mass percent	درصد جرمي
mechanical properties	خواص مکانیکی
melting point	نقطهی ذوب
metallic bond	پيوند فلزى
modifier oxide	اکسید دگرگونساز
molality	مولاليته
molarity	مولاريته
mole	مول
molecular compound	تركيب مولكولي
molecular formula	فرمول مولکولی
mixture	مخلوط
mixture ingriediant	اجزاي مخلوط

Ν

network former oxide	اكسيد شبكهساز
non - conductor	نارسانا
non - polar molecule	مولكول غيرقطبي

0

opacifire	اپک کنندہ
opaque	کدر (ایک)
optical properties	خواص نوري
	۱۵۶

orbital	اوربيتال
organic compound	ترکیب آلی

Р

periodic properties	خواص تناوبی
physical change	تغيير فيزيكي
physical equilibrium	تعادل فيزيكى
plastic deformation	تغيير شىكل پلاستيكى
polar molecul	مولكول قطبي
potassium oxide	پتاسیم اکسید
pseudo setting	گیرش کاذب
pure material	مادہ ی خالص

R

rate of reaction	سرعت واكنش
refractoriness	دیرگدازی
rapid setting	گيرش سريع
reversible	بر گشت پذير
rotary kiln	کورہی چرخان
rubidium oxide	روبيديم اكسيد

S

salt glaze	لعاب نمكي
saturation	اشباع
semiconductor	نيمەرسانا
setting of plaster	گیرش گچ
shell - electron	لايهى الكتروني

shrinkage	انقباض
sodium carbonate	سديم كربنات
sodium nitrate	سديم نيترات
sodium oxide	سديم اكسيد
sodium sulphate	سديم سولفات
solubility	حلاليت
specific heat	گرمای ویژه
stability	دوام، پایداری
stain	رنگينه
strain	كرنش
strength	استحكام
stress	تنش
structural formula	فرمول ساختاري
subsidiary energy level	تراز فرعي انرژي
super cooling	ابر سرمایش

Т

thermal conductivity	رسانايي حرارتي
thermal expansion	انبساط حراتي
thermal expansion coefficient	ضريب انبساط حرارتي
thermal properties	خواص گرمایی
thermal shock	شوک حرارتی
thermocouple	ترمو کو پل
transparent	شىفاف

U

٤	ۺ	برز
ι	کا	ش کا

V

volence bond	باند ظرفیت
viscosity	ويسكوزيته
volume	حجم
volume percent	درصد حجمی
volume mass concentration	غلظت جرمي حجمي

منابع و مراجع

۱) رحیمی، افسون ؛ متین، مهران، **تکنولوژی سرامیکهای ظریف**، جلد ۱ و ۲، چ ۱، شرکت خاک چینی ایران، ۱۳۶۹.

۲) سالاریه، محمود، **لعاب، خواص، کاربرد و عیوب،** دانشگاه آزاد اسلامی واحد تفرش. ۱۳۸۳.

۳) قصاعی، حسین، **جزوات درسی دانشگاهی**، دانشگاه علم و صنعت ایران، ۱۳۷۵.

۴) مارقوسیان، واهاک، **شیشه (ساختار، خواص وکاربرد**)، دانشگاه علم و صنعت ایران، چاپ ۱، ۱۳۸۱.

۵) ملاردی، محمدرضا، **شیمی (۲) رشتهی متالورژی**، شرکت چاپ و نشر کتابهای درسی ایران، ۱۳۸۵.

۶) میرهادی، بهمن، **مواد اولیه لعابها، رنگها و محاسبهی آنها،** مرکز نشر پروفسور حسابی، دانشگاه صنعتی امیرکبیر واحد تفرش، ۱۳۸۰.

